Enhanced Electrochemical Performances of Hollow-Structured N-Doped Carbon Derived from a Zeolitic Imidazole Framework (ZIF-8) Coated by Polydopamine as an Anode for Lithium-Ion Batteries

نویسندگان

چکیده

Doping heteroatoms such as nitrogen (N) and boron (B) into the framework of carbon materials is one most efficient methods to improve electrical performance carbon-based electrodes. In this study, N-doped has been facilely synthesized using a ZIF-8/polydopamine precursor. The polyhedral structure ZIF-8 effective surface-coating capability dopamine enabled formation with hollow structure. polyhedron served sacrificial template for structures, participated donor element. When compared ZIF-8-derived carbon, HSNC electrode showed an improved reversible capacity approximately 1398 mAh·g?1 after 100 cycles, excellent cycling retention at voltage range 0.01 3.0 V current density 0.1 A·g?1.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Facile synthesis and electrochemical performances of hollow graphene spheres as anode material for lithium-ion batteries

UNLABELLED The hollow graphene oxide spheres have been successfully fabricated from graphene oxide nanosheets utilizing a water-in-oil emulsion technique, which were prepared from natural flake graphite by oxidation and ultrasonic treatment. The hollow graphene oxide spheres were reduced to hollow graphene spheres at 500°C for 3 h under an atmosphere of Ar(95%)/H2(5%). The first reversible spec...

متن کامل

Mo-doped SnO2 mesoporous hollow structured spheres as anode materials for high-performance lithium ion batteries.

We designed a facile infiltration route to synthesize mesoporous hollow structured Mo doped SnO2 using silica spheres as templates. It is observed that Mo is uniformly incorporated into SnO2 lattice in the form of Mo(6+). The as-prepared mesoporous Mo-doped SnO2 LIBs anodes exhibit a significantly improved electrochemical performance with good cycling stability, high specific capacity and high ...

متن کامل

A novel anode material derived from organic-coated ZIF-8 nanocomposites with high performance in lithium ion batteries.

A general method of preparing nanocomposites from a metal-organic framework coated with hydroxyl, pyrrolyl and/or carboxyl functionalized organics is introduced. Pyrolysis of these nanocomposites gives anode materials with improved discharge capacity (750 mA h g(-1)) and cyclability. They also show enhanced Coulombic efficiency over the initial 5-10 cycles and decreased internal impedance.

متن کامل

Electrochemical Evaluation of PbO Nanoparticles as Anode for Lithium Ion Batteries (Technical Note)

PbO nanoparticles were synthesized using hydrothermal process. Scanning electron microscopy (SEM) was used in order to investigate of PbO powders. X-ray diffraction (XRD) pattern confirmed β-PbO formation during this process. The crystallite size of the powders was calculated using Scherrer formula about 74.6 nm. Electrochemical evaluation of the PbO nanoparticles as anode for Li-ion batteries ...

متن کامل

Synthesis of Hard Carbon- Silicon Nanocomposite as Anode Active Material for Lithium-Ion Batteries

In this research, using phenolic resin as the precursor of carbon and various amounts of ethylene glycol as a pore former, porous samples of hard carbon were synthesized. Samples were characterized by x-ray diffraction (XRD) and N2 adsorption-desorption methods. Broad diffraction peaks represent the amorphous structure of samples. Moreover, the gas adsorption-desorption curves showed that the a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Energies

سال: 2021

ISSN: ['1996-1073']

DOI: https://doi.org/10.3390/en14092436